Cari Blog Ini

Jumat, 25 November 2011

Trigonometri

Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.
  
Sejarah awal
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.
Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.
Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis. 

Trigonometri sekarang ini
Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales
  
Triangulasi
Dalam trigonometri dan geometri dasar, triangulasi adalah proses mencari koordinat dan jarak sebuah titik dengan mengukur sudut antara titik tersebut dan dua titik referensi lainnya yang sudah diketahui posisi dan jarak antara keduanya. Koordinat dan jarak ditentukan dengan menggunakan hukum sinus.  
      
menentukan posisi kapal dengan triangulasi
Pada gambar di sebelah kanan, dapat dilihat bahwa sudut ketiga (sebut saja θ) diketahui sama dengan 180°-α-β, atau dapat dihitung sebagai perbedaan antara dua penentuan arah kompas yang diambil dari titik A dan B. Sisi l adalah sisi yang berlawanan dengan sudut θ dan sudah diketahui jaraknya. Dengan hukum sinus, rasio sin(θ)/l sama dengan rasio yang berlaku untuk sudut α dan β, sehingga panjang dari 2 sisi lainnya dapat dihitung dengan aljabar. Dengan menggunakan salah satu panjang sisi, sinus dan cosinus dapat digunakan untuk menghitung arah/kedudukan dari sumbu utara/selatan dan timur/barat dari titik pengamatan ke titik yang tidak diketahui tersebut, sehingga dapat memberikan koordinat akhir.

Sumber : Wikipedia, kategori : Geometri


Tidak ada komentar:

Posting Komentar